
EVERYONE NEEDS VALIDATION

VALIDATION VERA EHRENSTEIN NOVEMBER 2021 PROFESSOR

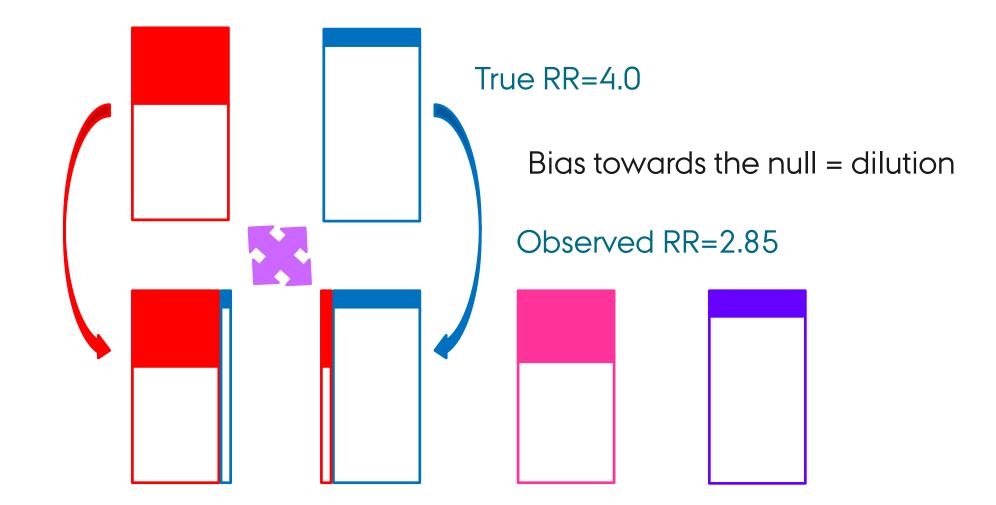
ALGORITHMS - INSTRUMENTS

ਰ ਹੈ	- -				Infections.xlsx - Excel					E –	ō ×
File Home	Insert	Page Layou	it Formulas Data Review View Ki	utools ™ Kutools Plus Acrobat	♀ Tell me what you want to do					Vera Ehrens	tein 🞗 Share
Paste ↓ Cipboard	Painter B		$\begin{array}{c c} \bullet & 11 & \bullet & A^* & A^* & \blacksquare & $	& Center - \$ - % +		rmal Bad eck Cell Explanatory Styles	Good Neutral Followed Hy	Insert Delete Format		& Find & er * Select *	
A227 -	: × •	f _x	Abscess								
» 🔟	А	В	С	D	E	F	G	H I	J K	L	I M
1 Infectio	onType	ICD10	ICD10Text	Exclusion	Exclusiontext	Notes	DiagnosesTypes	PatientType			
2 Intra-ab	bdominal infe	A00	Cholera				C_ADIAG	0 (Inpatient 1+ overnight stay)			
	bdominal infe		Typhoid and paratyphoid fevers				C_ADIAG	0 (Inpatient 1+ overnight stay)			
4 Intra-ab	bdominal infe		Other salmonella infections	A021, A022C	Excluding A021 Salmonella sepsis, A022C	S Included in other types	C_ADIAG	0 (Inpatient 1+ overnight stay)			
Sepsis		A021	Salmonella sepsis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
		A022C	Salmonella meningitis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
7 Intra-ab	bdominal infe	A03	Shigellosis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
	bdominal infe		Other bacterial intestinal infections				C_ADIAG	0 (Inpatient 1+ overnight stay)			
	bdominal infe		Other bacterial foodborne intoxications, not el	sewhere classified			C_ADIAG	0 (Inpatient 1+ overnight stay)			
	bdominal infe		Amoebiasis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
	bdominal infe		Other protozoal intestinal diseases				C_ADIAG	0 (Inpatient 1+ overnight stay)			
12 Intra-ab	bdominal infe	A08	Viral and other specified intestinal infections				C_ADIAG	0 (Inpatient 1+ overnight stay)			
13 Intra-ab	bdominal infe	A09	Other gastroenteritis and colitis of infectious ar	nd unspecified origin			C_ADIAG	0 (Inpatient 1+ overnight stay)			
14 Infectio	ons of CNS	A170	Tuberculous meningitis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
15 Other		A20	Plague	A203	Exclude A203 Plague meningitis	Included in other types	C_ADIAG	0 (Inpatient 1+ overnight stay)			
16 Infectio	ons of CNS	A203	Plague meningitis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
17 Other		A21	Tularaemia				C_ADIAG	0 (Inpatient 1+ overnight stay)			
18 Other		A22	Anthrax	A227	Exclude A227 Anthrax sepsis	Included in other types	C_ADIAG	0 (Inpatient 1+ overnight stay)			
19 Sepsis		A227	Anthrax sepsis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
20 Other		A23	Brucellosis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
21 Other		A24	Glanders and melioidosis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
22 Other		A25	Rat-bite fevers				C_ADIAG	0 (Inpatient 1+ overnight stay)			
23 Other		A26	Erysipeloid				C_ADIAG	0 (Inpatient 1+ overnight stay)			
24 Other		A27	Leptospirosis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
25 Other		A28	Other zoonotic bacterial diseases, not elsewhe	A282B		Included in other types	C_ADIAG	0 (Inpatient 1+ overnight stay)			
26 Sepsis		A282B	Yersinia sepsis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
27 Other		A30	Leprosy [Hansen disease]				C_ADIAG	0 (Inpatient 1+ overnight stay)			
28 Other		A31	Infection due to other mycobacteria				C_ADIAG	0 (Inpatient 1+ overnight stay)			
29 Other		A32	Listeriosis	A321, A327	Exclude A321 Listerial meningitis and me	ni Included in other types	C_ADIAG	0 (Inpatient 1+ overnight stay)			
30 Infectio	ons of CNS	A321	Listerial meningitis and meningoencephalitis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
31 Sepsis		A327	Listerial sepsis				C_ADIAG	0 (Inpatient 1+ overnight stay)			
32 Other		A33	Tetanus neonatorum				C_ADIAG	0 (Inpatient 1+ overnight stay)			
33 Other		A34	Obstetrical tetanus				C_ADIAG	0 (Inpatient 1+ overnight stay)			
34 Other		A35	Other tetanus				C_ADIAG	0 (Inpatient 1+ overnight stay)			
35 Other		A36	Diphtheria				C_ADIAG	0 (Inpatient 1+ overnight stay)			

ERROR IN EPIDEMIOLOGY

- All instruments have errors
- random
- systematic

All epidemiologic measures are instruments


classifications (eg. BMI to measure obesis)

NONDIFFERENTIAL MISCLASSIFICATION OF BINARY EXPOSURE

Slide credit: Tim Lash

MISCLASSIFICATION

- -Classifying exposed as unexposed and vice versa
- -Classifying cases as noncases and vice versa
- -Subgroup/confounder misclassification
- -Complex scenarios with > 2 levels, continuous

information bias is a consequence of measurement error

RANDOM ERROR ON THE LEVEL OF A STUDY VARIABLE LEADS TO A SYSTEMATIC ERROR ON THE LEVEL OF THE STUDY RESULT

SYSTEMATIC ERROR

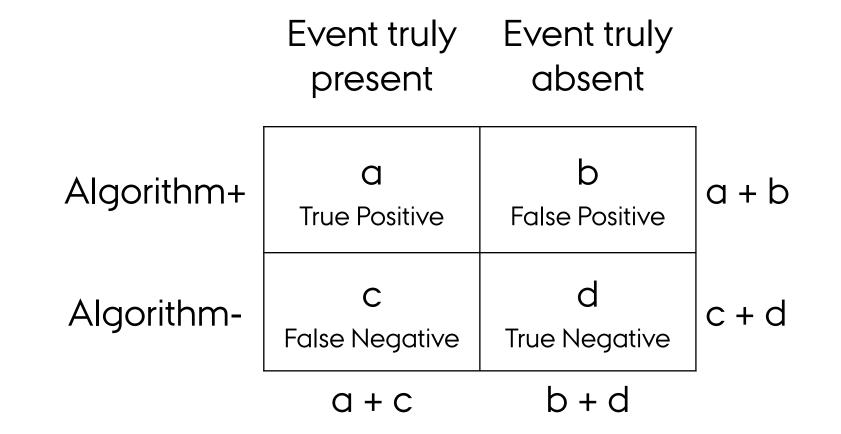
Large study size/high precision does not help!

Iweet

Darren L Dahly @statsepi

Or to put it plainly, highly accurate estimates of the wrong thing are especially wrong.cc @ken_rothman

V


Gary King S @kinggary The @nytimes claims "As we reach more people, our [live] poll will become more stable and the margin of sampling error will shrink." nytimes.com/interactive/20... This i...

EPIDEMIOLOGY: THE DIAGNOSIS PARADIGM

VALIDATION 2 X 2 TABLE

Gold standard

GOLD STANDARD

- Measures status perfectly (gold standard)
- Measures status better than algorithm (alloyed gold / reference standard)
- An independent source of information
- Examples in database validation
 - Medical chart review
 - Surveys
 - Other databases

HYPERCALCEMIA: ICD VS. LAB

	Calcium > 2.6 mmol/L	Calcium <= 2.6 mmol/L
ICD-10 E83.5 Yes	a True Positive	b False Positive
ICD-10 E83.5 No	c False Negative	d True Negative

371. The Validity of Hypercalcemia and Hypocalcemia Diagnoses in Danish Registries

Sussie Antonsen,¹ Christian F Christiansen,¹ Mette Nørgaard,¹ Cathy W Critchlow,² Henrik T Sørensen.¹ ¹Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; ²Center for observational research, Amgen, Inc., Thousand Oaks, CA, United States.

Background: Cancer metastasis is one of multiple potential causes of hypocalcemia and hypercalcemia, with clinical manifestations ranging from mild disease to severe hypercalcemia requiring acute treatment. Characterizing the performance of algorithms to identify hypo- and hypercalcemia is important in assuring the validity of pharmacoepidemiological studies using these diagnoses.

Objectives: To evaluate the positive predictive value (PPV) of hypo- and hypercalcemia diagnoses in the Danish National Registry of Patients (DNRP) using the Laboratory Information Systems (LABKA) as reference standard.

Methods: Using data from the DNRP from 1997 through 2006, we identified, among persons living in Northern Den-

Validity of ICD-10 diagnoses of overweight and obesity in Danish hospitals

This article was published in the following Dove Press journal: *Clinical Epidemiology*

Sigrid Bjerge Gribsholt ()^{1,2} Lars Pedersen¹ Bjørn Richelsen³ Reimar Wernich Thomsen ()¹ **Purpose:** Health care databases may be a valuable source for epidemiological research in obesity, if diagnoses are valid. We examined the validity and completeness of International Classification of Diseases, 10th revision [ICD-10] diagnosis coding for overweight/obesity in Danish hospitals.

-	-				
Total	Confirmed overweight/obesity	Not confirmed overweight/obesity	No BMI recorded	Positive predictive	
	BMI ≥25 kg/m²	BMI <25 kg/m ²		value, (95% CI)	
Ν	n (%)	n (%)	n (%)	%	H
19,672	15,689 (79.8)	167 (0.8)	3816 (19.4)	79.8 (79.2–80.3)	Ľ

	, .	-	\frown
	DE66 overweight/ obesity diagnosis code n (%)	No DE66 overweight/ obesity diagnosis code n (%)	Completeness (95% Cl)
All	25,619 (10.9)	209,259 (89.1)	10.9 (10.8–11.0)

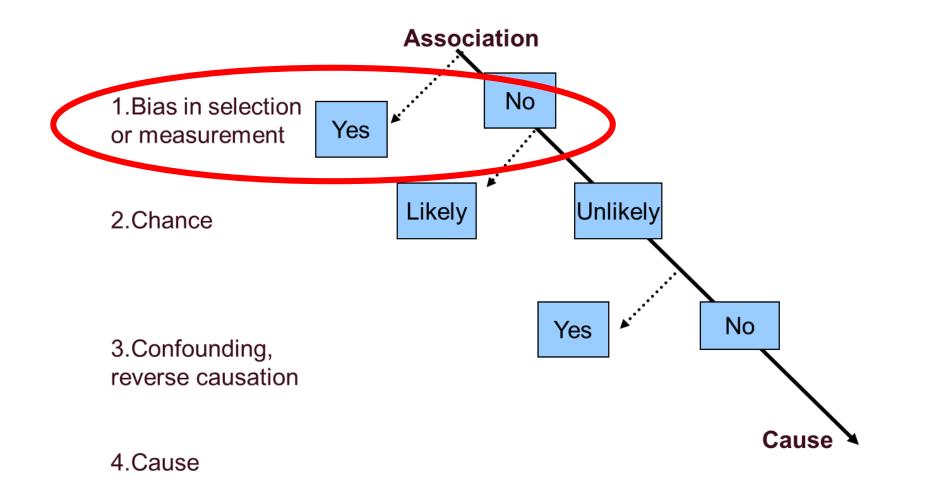
The data quality of haematological malignancy ICD-10 diagnoses in a population-based Hospital Discharge Registry M Nørgaard^{1,2}, M V Skriver¹, H Gregersen³, G Pedersen^{3,4}, H C Schønheyder⁵ and H T Sørensen¹

Table 1 Number of patients with a first-time diagnosis of a haematological malignancy in the Hospital Discharge Registry (HDR) in North Jutland County, Denmark, in the Danish Cancer Registry (DCR), and in both registries. Degree of completeness and positive predictive value (PPV) are given as percentages

	Patients registered in						
	Both registries <i>n</i> (%)	Only HDR <i>n</i> (%)	Only DCR n (%)	Total <i>n</i>	Degree of complete- ness % (95% CI)	PPV % (95% Cl)	
All haematological malignancies	908 (78.3)	167 (14.4)	84 (7.3)	1159	91.5 (89.6–93.1)	84.5 (82.2-86.5)	
Acute myeloid leukaemia	7 3 (62 .4)	35 (29.9)	9 (7.7)	117	89.0 (80.4–94.1)	67.6 (58.3–75.7)	
Hodgkin's disease	55 (65.5)	22 (26.2)	7 (8.3)	84	88.7 (78.5–94.4)	71.4 (60.5-80.3)	
Non-Hodgkin's lymphoma, or chronic lymphocytic leukaemia	523 (76.6)	90 (13.2)	70 (10.3)	683	88.2 (85.3–90.6)	85.3 (82.3–87.9)	
Multiple myeloma	130 (76.0)	28 (16.4)	13 (7.6)	171	90.9 (85.1–94.6)	82.3 (75.6–87.4)	

Completeness of HDR: 908/(908+84) = 0.915

The data quality of haematological malignancy ICD-10 diagnoses in a population-based Hospital Discharge Registry M Nørgaard^{1,2}, M V Skriver¹, H Gregersen³, G Pedersen^{3,4}, H C Schønheyder⁵ and H T Sørensen¹


Table 1 Number of patients with a first-time diagnosis of a haematological malignancy in the Hospital Discharge Registry (HDR) in North Jutland County, Denmark, in the Danish Cancer Registry (DCR), and in both registries. Degree of completeness and positive predictive value (PPV) are given as percentages

	Patients registered in						
	Both registries <i>n</i> (%)	Only HDR n (%)	Only DCR n (%)	Total <i>n</i>	Degree of complete- ness % (95% Cl)	PPV % (95% CI)	
All haematological malignancies	908 (78.3)	167 (14.4)	84 (7.3)	1159	91.5 (89.6–93.1)	84.5 (82,2-86.5)	
Acute myeloid leukaemia	7 3 (62 .4)	3 5 (29 .9)	9 (7.7)	117	89.0 (80.4–94.1)	67.6 (58.3–75.7)	
Hodgkin's disease	55 (65.5)	22 (26.2)	7 (8.3)	84	88.7 (78.5–94.4)	71.4 (60.5-80.3)	
Non-Hodgkin's lymphoma, or chronic lymphocytic leukaemia	523 (76.6)	90 (13.2)	70 (10.3)	683	88.2 (85.3–90.6)	85.3 (82.3-87.9)	
Multiple myeloma	130 (76.0)	28 (16.4)	13 (7.6)	171	90.9 (85.1–94.6)	82.3 (75.6-87.4)	

PPV of HDR: 908/(908+167) = 0.844

WE RELY ON ALGORITHMS TO DEFINE

- Eligibility criteria
- Exposures
- Outcomes
- Covariates
- Subgroups

Fletcher RH, Fletcher SW. Clinical epidemiology : the essentials. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

VALIDATION STUDIES = QUANTIFICATION OF MEASUREMENT ERROR

Error is bad Error is (almost always) unavoidable

How bad is it?

How much error is acceptable?

Can/should it be corrected?

What is the impact on the interpretation?

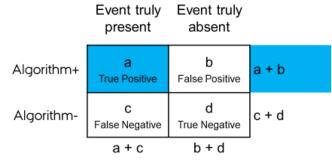
Vol. 25, No. 2 Printed in Great Britain

International Journal of Epidemiology © International Epidemiological Association 1996

A Framework for Evaluation of Secondary Data Sources for Epidemiological Research

TENRIK TOFT SØRENSEN,* SVEND SABROE AND JØRN OLSEN!** Sørensen H T (Department of Internal Medicine V, Aarhus University Hospital DK-6000 Aarhus C. Denmark) Sabroe S and Olsen J. A framework for evaluation of secondary data sources for epidemiological research. *International Jourga Spect 25:* 435–442.
 Background. As part of the development in information technology, increasing amounts of health care data are available for epidemiological research.
 Methods. In this review, we discuss the following factors affecting the value of secondary data format, and 7) possibilities of registration of individuals, 2) the accuracy and degree of completeness of the registered data, 3) the size of the data source, 4) the registration period, 5) data accessibility, availability and cost, 6) data format, and 7) possibilities of address. If the evaluation is satisfactory with respect to the above-mentioned factors relevant to iic particular studies and data source of these issues depends on the use of the data secure active and the secure active and on the groutent of iic particular studies and conclusion. The importance of these issues depends on the use of the data secure active active active active active problem.
 Medidas source could be a very cost-effective way of solving the research problem.
 Medidas source could be a very cost-effective way of solving the research problem.

VALIDATION STARTING POINT


- Design 1: sample on <u>potential (="imperfectly" measured) status</u>
- Design 2: sample on true (="perfectly" measured) status
- Design 3: sample both

VALIDATION DESIGN 1: POTENTIAL STATUS

- Define candidate event-finding algorithm (e.g., ICD-10)
- Identify a 'gold standard' source (e.g., charts)
- Define criteria for events and non-events
- Determine study size/precision of estimates
- Sample potential cases using algorithm (e.g., ICD-10 codes)
- Conduct validation (standard CRF)
- Estimate **positive/negative predictive value**

Positive predictive value = a/(a+b)

Positive predictive values of cardiovascular diagnoses in the Danish National Patient Registry.

Study population

We used the DNPR to randomly sample inpatient and outpatient hospital diagnoses from the Central Denmark Region between 1 January 2010 and 31 December 2012.

Our study population consisted of patients discharged with a primary or secondary first-time diagnosis from departments of cardiology, internal medicine, acute medicine and neurology in the three hospitals. For myocardial infarction, heart failure and venous thromboembolism, we also validated recurrent events.

Medical record review

Medical record review was used as the reference standard. We did not have access to ECGs or other paraclinical recordings that supported the clinician's decision. However, descriptions of such recordings were available in the medical records and included in the review process. Three physicians (JS, KA and TM) reviewed the medical records and judged whether they confirmed the cardiovascular diagnosis coded in the DNPR. If the diagnosis was not described in the discharge summary or if the discharge summary was not available, the full medical record was reviewed to examine whether the diagnosis code could be confirmed.

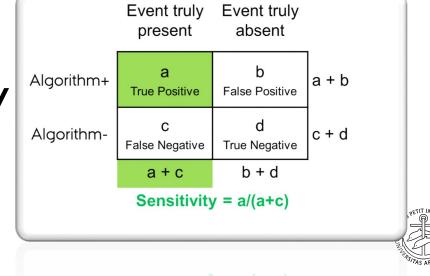
			PPV, %
Disease	Sample	Ratio	(95% CI)
Myocardial infarction			
First-time myocardial infarction	100	96/99	97 (91-99)
First-time STEMI	23	22/23	96 (79–99)
First-time NSTEMI	39	36/39	92 (80-97)
Recurrent myocardial infarction	100	88/100	88 (80-93)
Stent thrombosis	24	22/24	92 (74-98)
Angina pectoris	100	00/00	00 (00 00)
Stable angina pectoris	100	89/96	93 (86-96)
Unstable angina pectoris	100	84/96	88 (79-93)
Heart failure			
First-time admission	100	72/95	76 (66-83)
Readmission	100	73/96	76 (67-83)
Cardiomyopathy	00	00/00	00 (00 05)
Cardiomyopathy overall	89	80/89	90 (82-95)
Dilated cardiomyopathy	20	15/20	75 (53-89)
Hypertrophic cardiomyopathy	20	18/20	90 (70-97)
Restrictive cardiomyopathy	9	7/9	78 (45-94)
Arrhythmogenic right ventricular cardiomyopathy	20	20/20	100 (84-100)
Takotsubo cardiomyopathy	20	20/20	100 (84-100)
Hypertension			
Arterial hypertension	100	89/97	92 (85-96)
Pulmonary hypertension	100	87/100	87 (79-92)
Arrhythmia			
Atrial fibrillation or flutter	100	92/97	95 (89-98)
Bradycardia	100	87/100	87 (79-92)
Ventricular tachycardia or fibrillation	100	77/96	80 (71-87)
Cardiac arrest	100	94/100	94 (88-97)
Valvular heart disease			
Mitral regurgitation or stenosis	50	47/49	96 (86-99)
Aortic regurgitation or stenosis	50	49/50	98 (90-100)
Inflammation/Infection			
Endocarditis	100	79/96	82 (73-89)
Myocarditis	73	42/66	64 (52-74)
Pericarditis	100	90/98	92 (85-96)
Aortic diseases			
Aortic dissection	50	46/50	92 (81-97)
Aortic aneurysm or dilatation	50	50/50	100 (93-100)
Venous thromboembolism	100	07/00	00 (00 00)
First-time venous thromboembolism	100	87/99	88 (80-93)
First-time deep venous thrombosis	51	43/50	86 (74-93)
First-time pulmonary embolism	49	44/49	90 (78-96)
Recurrent venous thromboembolism	100	67/93	72 (62-80)
Recurrent deep venous thrombosis	41 59	29/39 38/54	74 (59-85) 70 (57-81)
Recurrent pulmonary embolism	28	38/54	/0 (5/-61)
Other			
Arterial claudication	100	88/97	91 (83-95)
Hypercholesterolemia	100	90/94	96 (90-98)
Cardiac tumors	26	22/26	85 (66-94)
			60 80 100

Jens Sundbøll et/alp BMJ Open-2046;6;6:e012832

BMJ Open

VALIDATION DESIGN 2: TRUE STATUS

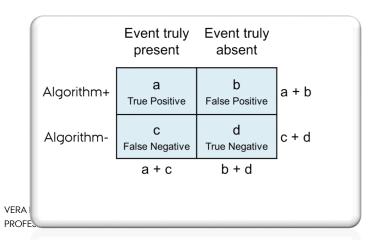
- Define candidate event-finding algorithm (e.g., ICD-10)
- Identify an independent sample of true events and non-events ('a gold standard')
- Define criteria for events and non-events
- Search the database for algorithm components among the members of the independent sample


NOVEMBER 202

VERA EHRENISTEIN

PROFESSOR

- Conduct validatio (CRF)
- Compute algorithm sensitivity/specificity
 - Any code
 - Each code


VALIDATION DESIGN 3: <u>STATUS-INDEPENDENT</u>

- Define candidate event-finding algorithm (e.g., ICD-10)
- Define a gold standard
- Define criteria for events and non-events
- Determine algorithm-based event/non-event status
- Compute sensitivity, specificity, PPV, NPV of the event-finding algorithm

AI IDATION

FMBER 202

- Any component
- Each component

Clinical Epidemiology

Dovepress

ORIGINAL RESEARCH

open Access Full Text Article

Validity of the Danish National Registry of Patients for chemotherapy reporting among colorectal cancer patients is high

> This article was published in the following Dove Press journal: Clinical Epidemiology 29 August 2013 Number of times this article has been viewed

Jennifer L Lund¹ Trine Frøslev¹ Thomas Deleuran^{1,2} Rune Erichsen¹ Tove Nilsson¹ Annette Norkær Pedersen³ Morten Høyer⁴

¹Department of Clinical Epidemiology. ³Department of Medicine V (Hepatology and Gastroenterology). ³Hospital Pharmacy. ⁴Department of Oncology. Aarhus University Hospital, Aarhus, Denmark

Background: The Danish National Registry of Patients (DNRP) is a potentially valuable resource for monitoring national trends in the use of chemotherapy and evaluating the benefits and harms of alternative treatments among colorectal cancer (CRC) patients in Denmark. However, the validity of chemotherapy reporting in the DNRP is unknown. In this study, we evaluated the validity of the DNRP for identifying the receipt of chemotherapy and specific treatments, and the timing and number of treatments among CRC patients, using medical records and pharmacy data as the reference standard.


Methods: We selected a random sample of CRC patients with lymph node involvement who were diagnosed at Aarhus University Hospital (n = 25) or Aalborg University Hospital (n = 25) from 2009 to 2010. Administration dates, specific treatments, and number of treatment courses were abstracted for the 180 days post diagnosis from the DNRP, medical records, and pharmacy production databases. The prevalence of chemotherapy, timing of first administration, and number of courses were described. DNRP data were compared with the reference standard for each hospital, and the kappa, sensitivity, specificity, positive and negative predictive values, and 95% confidence intervals were calculated for the receipt of any chemotherapy and specific treatments.

Results: The prevalence of chemotherapy was 72% and 68% among CRC patients treated in Aarhus and Aalborg, respectively, with >90% of patients without distant metastasis receiving treatment within 90 days from diagnosis. Patients received on average 4.6 and 4.7 treatment courses in Aarhus and Aalborg, respectively. Kappa, sensitivity, and specificity of chemotherapy reporting in the DNRP was high (\approx 0.88), but the sensitivity of individual chemotherapies varied by hospital.

Conclusion: The validity of chemotherapy reporting in the DNRP was high, although some variation by hospital exists. The DNRP represents a population-based nationwide resource that can be used to provide timely and accurate evaluations of chemotherapy use among CRC patients in Denmark.

Keywords: chemotherapy, colorectal cancer, administrative data

Figure I Study flow chart of patients selected for inclusion in the validation study. **Notes:** ^aRegional lymph node involvement was identified using the tumor, node, metastasis (TNM) staging system (N \ge NI); ^busing an administrative algorithm requiring a hospital diagnosis of colorectal cancer (International Classification of Diseases (ICD)-10 codes: C18-20) \pm 14 days from the diagnosis date, as reported by the Danish Cancer Registry.

Treatment	Source of r	eporting			Sensitivity	S pecificity	PPV	NPV	Kappa	
	Ref Y DNRP Y	Ref N DNRP N	Ref Y DNRP N	Ref N DNRP Y	95% CI	95% CI	95% CI	95% CI	95% CI	
Aarhus										
Chemotherapy	17	7	I	0	0.94 (0.84–1.00)	1.00	1.00	0.87 (0.65-1.00)	0.90 (0.72- 1.00)	
5-FU ^a	0	23	2	0	0.00	1.00	-	0.92 (0.81-1.00)	-	
Oxaliplatin⁵	3	13	9	0	0.25 (0.05-0.50)	1.00	1.00	0.59 (0.39–0.80)	0.26 (0.00-0.52)	
Bevacizumab ^c	3	21	I	0	0.75 (0.33-1.00)	1.00	1.00	0.95 (0.87-1.00)	0.83 (0.52–1.00)	
Aalborg										
Chemotherapy	17	7	0	I	1.00	0.88 (0.65-1.00)	0.94 (0.84–1.00)	1.00	0.90 (0.72-1.00)	
5-FU ^a	8	16	0	I	1.00	0.94 (0.83-1.00)	0.89 (0.68-1.00)	1.00	0.91 (0.74–1.00)	
Oxaliplatin⁵	3	22	0	0	1.00	1.00	1.00	1.00	1.00	
Bevacizumab ^c	6	19	0	0	1.00	1.00	1.00	1.00	1.00	

Notes: alncludes administration of 5-FU or capecitabine without oxaliplatin or bevacizumab; bincludes administration of oxaliplatin in combination with 5-FU (FOLFOX) or capecitabine (XELOX), but without bevacizumab; bincludes administration of bevacizumab in combination with FOLFOX, XELOX, irinotecan and 5-FU (FOLFIRI), or 5-FU.

Abbreviations: CI, confidence interval; Ref, reference standard; Y, yes; N, no; DNRP, Danish National Registry of Patients; PPV, positive predictive value; NPV, negative predictive value; 5-FU, 5-fluorouracil.

PRIORITIZING VALIDITY MEASURES

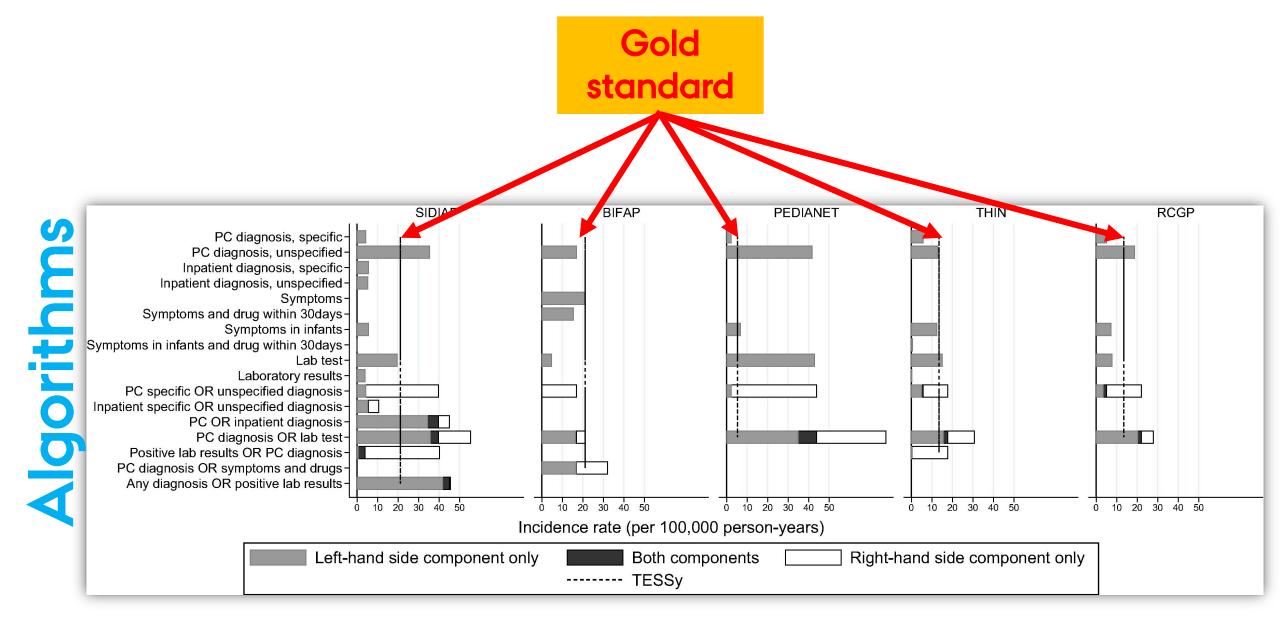
UNIGINAL RESEARCH

Validity of ICD-10 diagnoses of overweight and obesity in Danish hospitals

This article was published in the following Dove Press journal: *Clinical Epidemiology*

Sigrid Bjerge Gribsholt (p^{1,2}) Lars Pedersen¹ Bjørn Richelsen³ Reimar Wernich Thomsen (p¹) **Purpose:** Health care databases may be a valuable source for epidemiological research in obesity, if diagnoses are valid. We examined the validity and completeness of International Classification of Diseases, 10th revision [ICD-10] diagnosis coding for overweight/obesity in Danish hospitals.

-	-			
Total	Confirmed overweight/obesity	Not confirmed overweight/obesity	No BMI recorded	Positive predictive
	BMI ≥25 kg/m²	BMI <25 kg/m ²		value, (95% CI)
Ν	n (%)	n (%)	n (%)	%
19,672	15,689 (79.8)	167 (0.8)	3816 (19.4)	79.8 (79.2–80.3)


	U U	J	\frown
	DE66 overweight/ obesity diagnosis code n (%)	No DE66 overweight/ obesity diagnosis code n (%)	Completeness (95% Cl)
All	25,619 (10.9)	209,259 (89.1)	10.9 (10.8–11.0)
I	I	T	

PRIORITIZING VALIDITY MEASURES

- Eligibility criteria may prioritize specificity/indication
- Exposure
 - Strive to make errors non-differential (e.g., blinding)
- Outcome
 - May prioritize specificity for relative risks
 - May prioritize sensitivity for absolute risks
- Confounders/covariates
 - May prioritize sensitivity (confounding excluded is confounding uncontrolled)

ALGORITHM PORTABILITY

	Contents lists available at ScienceDirect Vaccine journal homepage: www.elsevier.com/locate/vaccine	Vaccine
Case study Rosa Gini ^{a,**} Consuelo Hu Giorgia Dan Sonja Gand Emmanoue ^a ^a Agenzia regional ^b Erasmus Univers ^c Julius Global He ^a P95 Epidemiolo ^e BIFAP Database ^f Institut Univers ^s Epidemiologica	and a context of the advance project and perture in the advance project and perture in the advance project and the advance project and the advance of the advance project and the advance of the adv	Tramontan ^{g,h} , iteri ^o ,
Sanoji i asta	urrey, Guildford, Surrey Research and Surveillance Center of General Practitioners, Research and Surveillance Center of Josef Steeles Ave W, North York, ON M2R 3T4, Canada r, 1755 Steeles Ave W, North York, ON M2R 3T4, Canada ildren's Hospital, Basel, Switzerland f Basel, Switzerland benetion Foundation, Switzerland benetion Foundation, Switzerland	

OVERARCHING PRINCIPLES

- Accept the reality that errors are inevitable
- When prioritizing validity metrics, consider consequences of the error to interpretation/clinical practice
- Try to quantify error impact bias analysis

Managaran Sanagaran Sanag Ang ang ang ang ang ang ang ang ang ang a	analysis		Search this site				
Navigation Applying Quantitative Bias Analysis to Epidemiologic Data Errata Collaboration Multiple Bias Model (Lash TL, Fink A)	Applying Quantitative Bias Analysis to Epider Use this page to download the accompanying spreadsheets and SAS code (see Lash TL, Fox MP, Fink AK. <u>Applying Quantitative Bias Analysis to Epidem</u> You can find reviews of the textbook in the <u>American Journal of Epidemioloc</u>	bottom of page) for the book: ologic Data. Springer. 2009.	Ch5_UnmeasuredConfounding_	2013_01_31.xls [Protected View] - Excel		॒ –	o x
sensmac SAS Macro (Fox MP, Lash TL, Greenland S) Links Sitemap	This book collects and synthesizes methods for quantifying systematic error This text provides the first-ever compilation of bias analysis methods for use design of validation studies and the collection of validity data from other sou	PROTECTED VIEW Be careful—email attachments can	Data Review View ACROBAT Q Tell me what contain viruses. Unless you need to edit, it's safer to stay	-		Vera Ehrenstein	우 Share ×
Use the links above to navigate to different pages on our site. Questions, comments, corrections, email blas.analysis@gmail.com	and classification errors. Subsequent chapters extend these methods to mules a chapter on presentation and interpretation of bias analysis results. Although techniques for bias analysis have been available for decades, these and organized presentation, it also explains the methods in a consistent fast spreadsheets (available at links provided in the text), readers can follow the set without experience using quantitative bias analysis will be able to design, im without experience using quantitative bias analysis will be able to design, im 10 11 12 13	A B C D E F C UNMEASURED CONFOUNDING of a polych This spreadsheet can be used to conduct as or unmeasured polychotomous confounder. Instructions Enter the bias parameters in the blue cells to the right and the crude data in the blue cells below. Cells in green give the results after adjusting for the unmeasured confounder.	notomous confounder (OR) simple sensitivity analysis to correct for an unknown	Reset Clear Data s	T U V W X Y	SE(LN(OR)) con\ RR C2 RR C1	AA 0.217993 0.184225 0.337889 0.337889 0.337889 364.68 166.62 278.70
	14 15 16 17 18 19 20 21 22 23 24 25 26 26 28 28 23 31	Crude Measure (95% Cl) OR (Circ-HIV) 0.22 (0.15 - 0.31)	Circ + Circ - Circ + 42.0 A2 1.8 B2 316.2 C2 4.7 D2 358.2 M2 6.5 N2 Ind Unmeasured Confounder Specific Measures Religion 2 Ind Circ-HIV OR (Circ-HIV Relationship Adjusted for Re OR (Circ-HIV Relationship Adjusted for Re	Circ - Circ + A1 14.6 B1 C1 18.6 D1 M1 33.2 N1 Of Circ-HIV Relationship Religion 1 OR (ED)	Circ - A_0 68.5 B_0 C_0 69.8 D_0 M_0 138.3 N_0	Error Check Negative Cell Proportion < 1 Proportion < 1 OR(C2-D[E+) OR(C1-D[E+) OR(C1-D[E-) OR(C1-D[E-) OR(CD) correct OR(CD) correct A1-3=a	0 0 0 0 0.4 0.8 0.4 0.8 TRUE TRUE TRUE TRUE
	28 31	OR (Circ-HIV) 0.22 (0.15 - 0.31) Image: Cover RR OR RD RR (Polych) RR (Polych)	OR (Circ-HIV) 0.34 OR (Circ-HI Circ-HIV Relationship Adjusted for Re	Iligion		OR(CD) correct	

https://sites.google.com/site/biasanalysis/

